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The study of multi-fractal functions has proved important in several domains of
physics. Some physical phenomena such as fully developed turbulence or diffu-
sion limited aggregates seem to exhibit some sort of self-similarity. The validity
of the multi-fractal formalism has been proved to be valid for self-similar func-
tions. But, multi-fractals encountered in physics or image processing are not
exactly self-similar. For this reason, we extend the validity of the multi-fractal
formalism for a class of some non-self-similar functions. Our functions are
written as the superposition of ‘‘similar’’ structures at different scales, reminis-
cent of some possible modelization of turbulence or cascade models. Their
expressions look also like wavelet decompositions. For the computation of their
spectrum of singularities, it is unknown how to construct Gibbs measures.
However, it suffices to use measures constructed according the Frostman’s
method. Besides, we compute the box dimension of the graphs.

KEY WORDS: Multi-fractal formalism; wavelets; turbulence; cascade models;
Gibbs measures; non-self-similar functions; Frostman’s method; box dimension.

1. INTRODUCTION

A bounded function F: RmQ C is Ca(x0) for a > 0 if there exists a poly-
nomial P of degree at most [a] and a constant C such that, if |x − x0 | [ 1,

|F(x) − P(x − x0)| [ C |x − x0 |a (1)

A function F belongs to Ca(Rm) if (1) holds for any x and x0 in Rm with a
uniform constant C.



In order to characterize both the regularity and the irregularity of F
at x0, we define the Hölder exponent aF(x0) of F at x0 as the supremum of
all values of a such that F is Ca(x0). If F is n times continuously differen-
tiable at the point x0 then one can use for the polynomial P(x − x0) the
order n Taylor series of F at x0 and thus prove that aF(x0) \ n. Thus the
Hölder exponent aF(x0) measures how irregular F is at the point x0. The
higher the exponent aF(x0), the more regular the function F.

A function F is multi-fractal if aF(x) differs widely from point to
point. In this case, the determination of the Hölder exponents aF(x) is dif-
ficult. Nonetheless the study of such functions has proved important in
several domains of physics and signal analysis (for example, see, ref. 1).

The determination of the Hölder exponent of a function can be
reduced to estimating its wavelet transform near x0, using either Proposi-
tion 1 or the discrete form of Proposition 1 (see refs. 2–4). Let k be a
wavelet, i.e., a Ck(Rm) function where all moments of order less than k
vanish and all derivatives of order less than k are well localized (and k is
large enough depending on the properties of F we want to analyze). The
wavelet transform of F at the position b ¥ Rm and for the scale a > 0 is

Ca, b(F)=
1

am
F
R
m

F(t) k̄ 1 t − b
a
2 dt (2)

Proposition 1. Let a < k.

• F ¥ Ca(Rm) if and only if |Ca, b(F)| [ Caa for all b and sufficiently
small a.

• If F ¥ Ca(x0), then for sufficiently small a and |b − x0 | [ 1/2,

|Ca, b(F)| [ Caa 11+
|b − x0 |

a
2a (3)

• If (3) holds and if F ¥ C e(Rm) for an e > 0, then there exists a
polynomial P such that, if |x − x0 | [ 1/2,

|F(x) − P(x − x0)| [ C |x − x0 |a log 1 2
|x − x0 |
2 (4)

The pointwise Hölder regularity is summed up by computing the
spectrum of singularities d(a) which associates to each a the Hausdorff
dimension d(a) of the set EaF of points x where aF(x)=a (conventionally
the dimension of the empty set is −.). A function is called multi-fractal
when d(a) is defined at least on an interval of non-empty interior.
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Multi-fractal analysis started to be developed in the context of fully
developed turbulence. Mandelbrot first introduced cascade models for the
dissipation of energy in a turbulent fluid (see refs. 5–7), that turned out to
be multi-fractal measures, see ref. 8 and references therein. This remarkable
insight did meet the experimental results obtained in wind-tunnels which
show that the regularity of the velocity of a turbulent fluid fluctuates
widely from point to point (see ref. 9). This phenomenon, related to
intermittency, suggests that the spectrum of singularities of the velocity of
the fluid might be a universal function, in which case its determination
would yield a fundamental information on the nature of turbulence.

Our purpose is to check the validity of an heuristic argument, that
relates the spectrum of singularities of a function, based on the wavelet
transform. The Frish–Parisi conjecture (due also to Arneodo et al.) which
is called the multi-fractal formalism for functions (see refs. 10 and 11)
asserts that

d(a)=inf
p

(ap − g(p)+m) (5)

In (5), the function g(p) is the Besov exponent given by

g(p)=sup{s: F ¥ B s/p,.p (Rm)} (6)

where the Besov space B s,.p (Rm) (cf. refs. 12 and 13) is the set of functions
F such that

F
R
m

|Ca, b(F)|p db [ Ca sp for all a small enough (7)

Remark 1. It follows from above that to compute both the Hölder
exponent aF(x) for any point x and the Besov exponent g(p) we should
estimate the size of the wavelet transform Ca, b(F) everywhere, and we
should obtain estimations of the form (3) and estimations of the form (7).
In general, that estimations are very difficult to obtain. However, if F
satisfies some self-affinity conditions then its wavelet transform satisfies a
similar self-affinity, for example if F: RmW R satisfies

,r > 0, ,l/-x F(x)=lF(rx) (8)

then its wavelet transform satisfies

-a > 0, -b Ca, b(F)=lCra, rb(F) (9)
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By the same way, if F is T-periodic, i.e.,

-x F(x+T)=F(x) (10)

then

-a > 0, -b Ca, b(F)=Ca, b+T(F) (11)

Relations (9) and (11) allow the estimation of the size of the wavelet trans-
form Ca, b(F) everywhere. Besides, from an experimental point of view, the
wavelet transform Ca, b(F) of a signal or an image F can be estimated on a
finite range of scales, so if the signal (or the image) satisfies the self-affinity
conditions (8) and (10) then its wavelet transform Ca, b(F) can be estimated
at all scales.

Each time the multi-fractal formalism has been shown to hold, it was
the consequence of some self-similarity (deterministic or statistic) either
for the function or of its wavelet transform. It is therefore reasonable to
conjecture that if a function satisfies some self-similarity condition, then
the multi-fractal formalism is likely to hold. But it is impossible to state a
reasonably general conjecture (one should be careful to avoid in such a
statement the counterexamples exhibited by Ben Slimane in refs. 14–16).

Some multi-fractals are partly self-similar. The applications of iterated
functional systems have shown the importance of such fractals in images
processing. (17) Some physical phenomena such as fully developed turbu-
lence (18) or diffusion limited aggregates (19) also seem to exhibit some sort of
self-similarity.

The validity of the Frish–Parisi conjecture has been first proved for a
restrictive class of self-similar (or self-affine) functions (see refs. 10, 20,
and 21). A self-similar (or self-affine) function (in the sense of Jaffard (12))
is a function which, modulo an error function g which is more regular, is
invariant under specific transformations involving mainly linear contrac-
tions (as in (8)) and translations (as in (10)). This means that F satisfies a
functional equation of the form

F(x)=C
d

j=1
ljF(S−1j (x))+g(x) (12)

where the Sj are contractions on a bounded open set W, and the |lj | are
smaller than 1.

In ref. 12, Jaffard proved the multi-fractal formalism for self-similar
functions in the case where
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• the Si are contractive similitudes (i.e., the product of an isometry
with a homothety of ratio < 1) such that

Si(W) … W (13)

and

Si(W) 5 Sj(W)=” if i ] j (separation condition) (14)

• The function g is Ck with all derivatives of order less than k having
fast decay.

• There exists x0 ¥ W such that F ¨ Ck(x0).

In ref. 22, Ben Slimane extended the results of Jaffard to nonlinear self-
similar functions associated to hyperbolic dynamical systems; he replaced
similitudes Sj by nonlinear contractions Tj in dimension m=1, and Tj’s
that are analytic mappings of z=x+iy (i is such that i2=−1) in dimen-
sion m=2. The fundamental idea behind these extensions is to make some
extra hypothesis which imply that locally these contractions are close to
linear contractions in dimension one and ‘‘contract with the same rate’’ in
each direction in dimension two.

The author of ref. 15 also proved that the multi-fractal formalism no
longer holds in dimension m \ 2 if the Si’s contract at different rates in
each direction of Rm, then he showed how to modify this formalism to suit
this type of functions.

Let us recall briefly the results of ref. 22; contrary to similitudes, the
nonlinear contractions Tj are only defined on a bounded open set W of Rm

(where m=1 or m=2), so the assumption that g has fast decay at infinity
does not make any sense, and has been replaced by the fact that g must be
supported in W̄. The sense of the self-similarity (12) for the Tj’s becomes

F(x)=˛ljF(T−1j (x))+g(x) if x ¥ Tj(W)

g(x) if x ¨1 j=1,..., d Tj(W)
(15)

For the sake of simplicity, we only treat the case m=1, W=]0, 1[ and
d=2. The general case (i.e., m=1 or 2, W is a bounded open set of Rm and
d \ 2) is similar. Suppose that the Tj are Ck+1 on I=W̄=[0, 1] and satisfy:

•

Tj(I) … W -j=1, 2 (16)

T1(I) 5 T2(I)=” (17)
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• there exists constants h and r such that

0 < h [ |T −j(x)| [ r < 1 -j=1, 2 and -x ¥ I (18)

Assume that g is a Ck function supported in I and that there exists
x0 ¥ ]0, 1[ such that F ¨ Ck(x0).

The fundamental idea behind the extensions of ref. 22 is that, the extra
hypothesis (18) and the fact that T'1 and T'2 are bounded imply that locally
the nonlinear contractions Ti1 p · · · p Tin can be uniformly approximated by
similitudes in the following sense (see refs. 23–25).

For i=(i1,..., in) ¥ {1, 2}n, denote |i|=n, Ti=Ti1 p · · · p Tin , Ii=Ti(I)
and |Ii |=diam(Ii).

Lemma 1. There exists a constant D \ 1 such that

D−1 |Ii | [ |T −i(x)| [D |Ii | (19)

-x ¥ I, -i=(i1,..., in) ¥ {1, 2}n and n ¥Ng.

As a consequence of Lemma 1 and the mean value theorem, we have
the following lemma (cf. refs. 23–25) (often called distortion lemma).

Lemma 2. There exists a positive number D such that for any
branches i=(i1,..., in) and j=(j1,..., jnŒ)

D−1 |Ii | |Ij | [ |Iij | [D |Ii | |Ij |

Iterating (12) or (15), F satisfies for any integer N ¥Ng and x ¥ R

F(x)= C
N−1

n=0
C

i=(i1,..., in) ¥ {1, 2}
n

li1 · · · lin g(T−1i (x))

+ C
i=(i1,..., iN) ¥ {1, 2}

N
li1 · · · liN F(T−1i (x)) (20)

(here by convention g(T−1i (x))=0 for x ¨ Ii and the term of the series
associated to n=0 is g(x)).

The nonlinear self-similar equation (15) has a unique solution which is
a bounded function supported in I. It is given by the series

F(x)= C
.

n=0
C

i=(i1,..., in) ¥ {1, 2}
n

li1 · · · lin g(T−1i (x)) (21)

By adding a simple condition on the lj, the function F has a positive global
Hölder regularity (i.e., F ¥ Camin(R) with amin > 0).
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Denote by K the unique non-empty compact set satisfying K=
T1(K) 2 T2(K) (see ref. 26). It follows from the separation hypothesis (17)
that there is a natural bijection p from the tree {1, 2}N to K, given by

{p(i1,..., in,...)}={ lim
nW.

Ti1 p · · · p Tin (t)} (22)

The value of p(i1,..., in,...) is independent of the initial value t. The
sequence (i1,..., in,...) is called the code of p(i1,..., in,...).

In refs. 12 and 22, for x ¨ K the function F is Ck on a neighbourhood
of x, however for x ¥ K

if a(x) :=lim inf
nQ.

log |li1(x) · · · lin(x) |
log |Ii1(x) · · · in(x) |

< k then aF(x)=a(x)

For the computation of the spectrum of singularities d(a), the authors
of refs. 12 and 22 used Gibbs measures. Let mn be the probability measure
on [0, 1] which associates the weight

|li1 · · ·lin |

(|l1|+|l2|)
n for each I(i1,..., in). Clearly,

we obtain at the limit n 0. a probability measure m supported on K.
For any n \ 1, Tn :={Ii; |i|=n} is a partition of K. Let T=1n \ 1 Tn. For
E … K and s > 0, denote

H s(E)=lim
eQ 0

1 inf 3C |Ii | s; E …0
i

Ii and |Ii | [ e42

and

dim(E)=inf{s > 0; H s(E)=0}

So the index dim is defined in a similar way to Hausdorff dimension, but
by considering only coverings by elements of T.

Thanks to the fact that for any branches i=(i1,..., il) and j=
(j1,..., js)

m(Iij)=m(Ii) m(Ij) (23)

the authors of refs. 12 and 22 can concentrate a Gibbs measure np on EjŒ(p)F ,
i.e., np(Ii) 4 (m(Ii))p |Ii |−j(p) for any i, where j is defined like in (36) (see
ref. 27). This allows the computation of the spectrum d(a)=dim(EaF) and
the extension of the validity of the multi-fractal formalism for nonlinear
self-similar functions (21).

But multi-fractals in physics or image processing are not necessarily
exactly self-similar, and might have different renormalization properties at
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different scales. Besides, in ref. 28, Ben Nasr showed that the existence of
Gibbs measures is not necessary for the multi-fractal formalism for mea-
sures. He also showed that it suffices to use measures constructed accord-
ing to Frostman’s method. The comprehension of this result is actually the
starting point which led us to this paper. The reason is that for the compu-
tation of the spectrum of singularities d(a) for our non-self-similar func-
tions, we use such measures. This will be explained in more details in
Section 5. Let us now describe in details the results of this paper.

2. MAIN RESULTS

For the sake of simplicity, we will assume that, m=1, W=]0, 1[ and
d=2. The general case (i.e., m=1 or 2, W is a bounded open set of Rm and
d \ 2) is similar. Consider two sequences (ln1)n \ 1 and (ln2)n \ 1 of numbers
and suppose that there exist A and B such that:

-n ¥Ng, -i=1, 2, 0 < A [ |lni | [ B < 1 (24)

We replace assumption (16) by a weaker one:

Tj(I) … I -j=1, 2 (25)

We call quasi-self-similar function F a series of the form (21) in which we
replace li1 · · · lin by l1i1 · · · lnin . This means that we might have different
renormalization properties at different scales, i.e.,

F(x)= C
.

n=0
C

i=(i1,..., in) ¥ {1, 2}
n

l1i1 · · · lnin g(T−1i (x)) (26)

(here also by convention g(T−1i (x))=0 for x ¨ Ii and the term of the series
associated to n=0 is g(x)).

Remark that the new function F is written as a superposition of
‘‘similar’’ structures at different scales, reminiscent of some possible
modelization of turbulence. The expression of F looks also like a wavelet
decomposition (except that g has no cancellation necessarily).

Contrary to the iterated self-similar equation (20) satisfied by the func-
tions F of both refs. 12 and 22, our function F (given by the series (26))
verifies for any integer N ¥Ng and x ¥ R the quasi-self-similar equation

F(x)= C
N−1

n=0
C

i=(i1,..., in) ¥ {1, 2}
n

l1i1 · · · lnin g(T−1i (x))

+ C
i=(i1,..., iN) ¥ {1, 2}

N
l1i1 · · · lNiNFN(T−1i (x)) (27)

548 Aouidi and Ben Slimane



with

FN(y)= C
.

n=0
C

j=(j1,..., jn) ¥ {1, 2}
n

lN+1j1
· · · lN+njn

g(T−1j (y)) (28)

Let us be more precise, for example, for N=1, the quasi-self-similar equa-
tion is

F(x)=˛
g(x)+l11F1(T−11 (x)) if x ¥ I1
g(x)+l12F1(T−12 (x)) if x ¥ I2
g(x) elsewhere

(29)

with

F1(y)= C
.

n=0
C

i=(i1,..., in) ¥ {1, 2}
n

l2i1 · · · l1+nin g(T−1i (y)) (30)

In general F1 is different from F. So, F is not self-similar as in (15).
If for all x ¥ I, F is Ck(x) then the multi-fractal formalism for a < k

does not have any interest, and this is the reason why the authors of refs. 12
and 22 assumed that there exists a point x0 ¥ W such that F ¨ Ck(x0). From
the characterization of the Hölder regularity by the wavelet transform, this
condition implies that there exists an Q 0, bn and Cn Q +. such that

|bn − x0 | [ an and |Can, bn (F)| \ Cna
k
n (31)

Remark 2. Since our quasi-self-similar function satisfies equation
(27) then for every N, if |i|=N and x0 ¥ Ii then F ¨ Ck(x0) if and only if
FN ¨ Ck(T−1i (x0)). So a natural assumption for our extension is that the
sequences an, bn and Cn should be uniform on N. This means that there
exist an 0 0, bn and Cn 0 +. such that

|bn − x0 | [ an and -N |Can, bn (FN)| \ Cna
k
n (32)

i.e., the sequence (FN)N is not uniformly in Ck(x0). This new condition is
possible; for example let g be a wavelet supported in [0, 1], T0(x)=1

3 x and
T2(x)=1

3 x+2
3 , and

F(x)=C
+.

j=0
C

i=(i1,..., ij) ¥ {0, 2}
j

l1i1 · · · l jij g(3 jx − 3 j−1i1 − · · · − 3ij−1 − ij)
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then for x=;.

j=1 ij(x) 3−j ¥ [0, 1]

FN(x)=C
+.

j=0
l1+Ni1(x)

· · · l j+Nij(x) g(3 jx − 3 j−1i1(x) − · · · − ij(x))

The discrete wavelet coefficients of FN are |Cj, l(FN)|=|l1+Ni1
· · · l j+Nij | for

l3−j=i13−1+ · · · +ij3−j. If 3−k < |lnp | -n ¥Ng and -p=0, 2, then the
discrete form of condition (32) (i.e., an=3−n, bn=l3−n) holds.

Outside K, the quasi-self-similar function F given in (26) is locally a
finite sum of functions generated by g. Therefore F is Ck outside K. The
regularity of F at each point x of K is obtained by estimating the size of the
wavelet transform in a neighborhood of x. We will use both the special
expression (26) of F and the iterated quasi-self-similar functional equation
(27) to prove that the wavelet transform of F satisfies a similar ‘‘quasi-self-
similar’’ functional equation, which will enable us to estimate the size of
the wavelet transform. We will prove that if b ¥ I(i1,..., in)+] − a, a[, then the
order of magnitude of |Ca, b(F)| is |l1i1 · · · lnin |. This will imply that for x ¥ K

if a(x)=lim inf
nQ.

log |l1i1(x) · · · lnin(x) |
log |I(i1(x),..., in(x)) |

< k, then aF(x)=a(x) (33)

This allows also the computation of g(p).
For the computation of the spectrum of singularities, the construction

of the Gibbs measures explained above fails because in general, -l, p ¥Ng,
|l1i1 | · · · |l lil | |l l+1j1 | · · · |l l+pjp | has not the same order of magnitude as
|l1i1 | · · · |l lil | |l1j1 | · · · |lpjp |. So, unlike the case (23) of self-similar functions,
the corresponding quantity m(Iij) has not the same order of magnitude as
m(Ii) m(Ij). The only method to compute d(a) is to use some results estab-
lished by Ben Nasr and al (see refs. 28 and 29). For x and y reals, define

K
¯

(x, y)=lim
eQ 0

inf 3C
i

|li |x |Ii |−y; K …0
i

Ii and |Ii | [ e4 (34)

Cn(x, y)=
1
n

log C
|i|=n

|li |x |Ii |−y and C(x, y)=lim sup
nQ+.

Cn(x, y) (35)

and

j(x)=sup{y; C(x, y) < 0} (36)

550 Aouidi and Ben Slimane



Let Bj={i: 2−j [ |Ii | < 2.2−j}. For i=(i1,..., in) we denote |i|=n, li=
l1i1 · · · lnin ,

amin=lim inf
jQ.

inf
i ¥ Bj

log |li |
log |Ii |

and amax=lim sup
jQ.

sup
i ¥ Bj

log |li |
log |Ii |

(37)

Theorem 1. If a ¨ [amin, amax], then d(a)=−..
Suppose that K

¯
(p, j(p)) > 0. Let a ¥ [amin, amax] such that a < k. If j

is derivable at p and if a=jŒ(p) then d(a)=ap − j(p)=infx(ax − j(x)).
Furthermore, if j(p)+1 < kp then g(p)=j(p)+1 and

d(a)=ap − g(p)+1= inf
q: j(q)+1 < kq

(aq − g(q)+1)

In the next section, we use the Littlewood-characterization of the
Ca(Rm) norm to compute the global Hölder regularity of F (see Propo-
sition 2). In Section 4, we determine the Hölder exponent aF(x) (see
Theorems 2–4). In Section 5, we compute the spectrum of singularities
(see Theorem 5). In Section 6, we determine the Besov exponent g(q) and
we prove the validity of the multi-fractal formalism (see Theorem 6). In
Section 7, we prove that the box dimension of the graph of F is equal to
sup(1, 1 − j(1)). Finally, Section 8 is a ‘‘summary and prospects’’ section in
which we apply our results for some examples of self-similar functions and
quasi-self-similar functions. We give some examples of quasi-self-similar
functions that are not self-similar and for which the function j(p) can be
numerically estimated. We also give some applications of our results for
representation of signals. Finally, we present some results concerning
random quasi-self-similar functions.

3. GLOBAL HÖLDER REGULARITY

We will use the Littlewood-characterization of the Ca(R) norm to
compute the global Hölder regularity of F (see refs. 13 and 30). Let k be a
function in the Schwartz class such that

k̂(t)=0 for |t| [ 1 and |t| \ 8

and

k̂(t)=1 for 2 [ |t| [ 4
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Let kl(x)=2 lk(2 lx). Recall that a function F is Ca(R) if and only if there
exists a constant C \ 0 such that

|F f kl(x)| [ C2−al -x ¥ R

Lemma 3. We have

0 < amin [ amax <. (38)

Proof of Lemma 3. If i=(i1,..., in) ¥ Bj then 2−j [ |Ii | < 2−j+1. The
relation (18) satisfied by T1 and T2 yields

hn [ |Ii | [ rn (39)

Hence

− (j − 1)
log 2
log h

< n [ − j
log 2
log r

Thus

(j − 1)
j

log B
log h

<
log |li |
log |Ii |

<
j

(j − 1)
log A
log r

Hence

0 <
log B
log h

[ amin [ amax [
log A
log r

<.

Whence Lemma 3. L

Proposition 2. If amin [ k, then F ¥ Camin− e(R), -e > 0.

Proof of Proposition 2. We split F as a sum

F(x)=C
j \ 0

F̃j(x) where F̃j(x)= C
i ¥ Bj

li g(T−1i (x))

Let wl, j=F̃j f kl and hi, l=(g p T−1i ) f kl.
We have

|hi, l(x)|=: F g(T−1i (y)) kl(x − y) dy :
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Denote by Pk gx(h) the Taylor expansion of order k of g at x, i.e.,

Pk gx(h)= C
q [ k

g (q)(x)
q!

hq (40)

Since g is supported in I and k is well localized and has enough
vanishing moments, then for x ¥ Ii

|hi, l(x)|=2 l : F
Ii

(g(T−1i (y)) − Pk−1(g p T−1i )x (y − x)) k(2 l(x − y)) dy :

Using the Taylor theorem and the fact that g is a Ck function, we
obtain

|hi, l(x)| [ 2 l F |k(2 l(x − y))| ( sup
u ¥ [x, y]

|(g p T−1i ) (k) (u)|) |x − y|k dy

The following result (cf. ref. 22) allows us to bound supu ¥ [x, y]
|(g p T−1i ) (k) (u)| by C |Ii |−k:

Lemma 4. There exists a constant C > 0 such that

|T (l)i (x)| [ C |Ii | - |i|=n, n ¥Ng, l=2,..., k+1 and x ¥ I

and

|(T−1i ) (l)(x)| [ C |Ii |−l - |i|=n, n ¥Ng, l=2,..., k+1 and x ¥ Ii

Lemma 1 implies that for i ¥ Bj and u ¥ Ii

D−12 j−1 [D−1 |Ii |−1 [ |(T−1i )Œ (u)| [D |Ii |−1 [D2 j (41)

Thanks to the second part of Lemma 4 and the fact that g is Ck and sup-
ported in I, we get

|(g p T−1i ) (k) (u)| [ C |Ii |−k [ C2kj (42)

Hence

|hi, l(x)| [ C2kj2 l F |k(2 l(x − y))| |x − y|k dy
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Thus for j [ l

|hi, l(x)| [ C2kj2−kl

Whence, for j [ l

C
i ¥ Bj : x ¥ Ii

|li | |hi, l(x)| [ C C
i ¥ Bj : x ¥ Ii

|li | 2k(j− l)

Lemma 5 (cf. refs. 12 and 22). Let xi=Ti(0) and L large enough.
Set

Bj, L(x)={i ¥ Bj : |x − xi | [ L2−j}

The cardinality of Bj, L(x) is bounded independently of x and j by CL.

From Lemma 5 and the fact that for x ¥ Ii, |x − xi | [ |Ii | [ C2−j, we
obtain for j [ l

C
i ¥ Bj : x ¥ Ii

|li | |hi, l(x)| [ C(sup
i ¥ Bj

|li |) 2k(j− l)

[ C2 (−amin+e) j2k(j− l)

As a consequence

C
0 [ j [ l

C
i ¥ Bj : x ¥ Ii

|li | |hi, l(x)| [ C2−kl C
0 [ j [ l

2 (−amin+e+k) j

[ C2 (−amin+e) l

Now, if x ¨ Ii, the localization and cancellation of k imply that
k=Y (k+1), where Y has fast decay. Therefore

|hi, l(x)|=2 l2−(k+1) l : F
Ii

(g p T−1i ) (k+1) (y) Y(2 l(x − y)) dy :

[ 2 l2−(k+1) l F
Ii

2 (k+1) j
CN

(1+2 l |x − y|)N
dy

Since |x − y| \ dist(x, Ii), then for j [ l

|hi, l(x)| [ CN
2−kl2 jk

(1+2 j dist(x, Ii))N
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If i ¥ Bj and |x − xi | [ L2−j then i ¥ Bj, L(x). In view of Lemma 5, we have

C
i ¥ Bj, L(x)

1
(1+2 j dist(x, Ii))N

[ Card Bj, L(x) [ CL (43)

On the other hand, if i ¥ Bj and |x − xi | > L2−j then there exists an integer
n \ 1 such that nL2−j [ |x − xi | < (n+1) L2−j. It follows that i ¥ Bj, (n+1) L(x).
Therefore

C
i ¥ Bj : |x−xi| > L2

−j

1
(1+2 j dist(x, Ii))N

[ C
n ¥N

g
C

i ¥ Bj, (n+1) L(x)

1
(1+2 j dist(x, Ii))N

(44)

Using Lemma 5 for Bj, (n+1) L(x), we obtain

C
n ¥N

g
C

i ¥ Bj, (n+1) L(x)

1
(1+2 j dist(x, Ii))N

[ C
n ¥N

g
C(n+1) L

1
(1+nL)N

(45)

The inequalities (43) and (45) imply that for N > 2

C
i ¥ Bj

1
(1+2 j dist(x, Ii))N

[ C

Hence as previously, we obtain

C
0 [ j [ l

C
i ¥ Bj : x ¨ Ii

|li | |hi, l(x)| [ C2 (−amin+e) l

On the other hand, for j > l, we have for any x ¥ R

|wl, j(x)| [ C sup |F̃j(x)|

[ C sup
i ¥ Bj

|li |

[ C2 (−amin+e) j

Hence

C
j > l

|wl, j(x)| [ C2 (−amin+e) l
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Whence for any e > 0 and x ¥ R

|F f kl(x)| [ C2−(amin− e) l (46)

As a result, F ¥ Camin− e(R) for any e > 0. L

4. THE POINTWISE HÖLDER EXPONENT

We will now compute the Hölder exponent of F at every point x.

Remark 3. It suffices to do this for x ¥ K, because outside K, F is
locally a finite sum of functions generated by g, and g is Ck.

We divide the computation into two steps. The upper bound for aF(x)
will be obtained in Section 4.1, and the lower bound will be obtained in
Section 4.2.

4.1. Upper Bound for Pointwise Hölder Exponent

We will use both the special expression (26) of F and the iterated quasi-
self-similar functional equation (27) to prove that the wavelet transform
of F satisfies a similar ‘‘quasi-self-similar’’ functional equation, which will
enable us to estimate the size of the wavelet transform. We will prove
that if b ¥ I(i1,..., in)+] − a, a[, then the order of magnitude of |Ca, b(F)| is
|l1i1 · · · lnin |. In view of the wavelet characterization (3) this will imply the
following theorem.

Theorem 2. Let x ¥ K and define

a(x)=lim inf
nQ.

log |l1i1(x) · · · lnin(x) |
log |Ii1(x) · · · in(x) |

If a(x) < k then

aF(x) [ a(x) (47)

Proof of Theorem 2. We will first estimate the size of the wavelet
transform near x. Set Bj(x)=Bj, L(x) and define

Lj(x)= sup
i ¥ Bj(x)

|li |
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and

L̃j(x)=C
j

l=1
Ll(x) 2−Â(j− l) with Â > amax

Clearly

a(x)=lim inf
jQ.

log Lj(x)
− j log 2

=lim inf
jQ.

log L̃j(x)
− j log 2

(48)

Similarly to (27), we have for any J ¥Ng

F(x)=C
J−1

j=0
C
i ¥ Bj

li g(T−1i (x))+ C
i ¥ BJ

liFJ(T−1i (x)) (49)

with

FJ(y)= C
.

n=0
C

i ¥1p ¥ Dn Bp
lJ+1i1

· · · lJ+nin g(T−1i (y))

where Dn … {n − 3 − d, n+2+d} and d the unique integer such that
2d [D < 2.2d (where D is the constant in the distortion Lemma). In fact,

F(x)=C
J−1

j=0
C
i ¥ Bj

li g(T−1i (x))+C
.

j=J
C
i ¥ Bj

li g(T−1i (x))

and if i ¥ Bj then 2−j [ |Ii | < 2.2−j, write i=(l, m) with l ¥ BJ, therefore

2−(2+d+j−J) [ |Im | < 2−(−2−d+j−J)

Remark that FJ is bounded independently of J because the cardinality of
Dn is at most 6+2d. Using the necessary condition (3) in Proposition 1, it
suffices to show the following result in order to prove Theorem 2.

Proposition 3. Let x ¥ K, J ¥N large enough such that LJ(x) \
1
2 L̃J(x). There exists a branch j0=(j01,..., j0n) in BJ(x), b ¥ Ij 0 and a ’ 2−J

such that

|b − x| [ Ca and |Ca, b(F)| \ CLJ(x)

Proof of Proposition 3. From the functional equation (49) satisfied
by F, we get

Ca, b(F)=C
J−1

j=0
C
i ¥ Bj

li F
Ii

k̄a, b(t) g(T−1i (t)) dt+ C
i ¥ BJ

li F
Ii

k̄a, b(t) FJ(T−1i (t)) dt
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By a change of variable, we obtain

Ca, b(F)=C
J−1

j=0
C
i ¥ Bj

li F
I

k̄a, b(Ti(t)) g(t) T −i(t) dt (50)

+ C
i ¥ BJ

li F
I

k̄a, b(Ti(t)) FJ(t) T −i(t) dt (51)

In ref. 22, the author gave asymptotic developments for the composition of
a wavelet by a contraction Ti. These developments are well adapted with
the wavelet analysis in the sense that at small scales the action of such con-
traction on the wavelet is close to a translation and rescaling of a possibly
different wavelet. Let us recall these developments.

Lemma 6 (cf. ref. 22). Let k be a compactly supported wavelet
with enough smoothness and vanishing moments. Suppose that k is real
and even. Let b ¥ Ii and a such that 0 < a < |Ii |, then

ka, b(Ti(t))=|(T−1i )Œ (b)| ka |(T −1i )Œ (b)|, T −1i (b)(t)

+ C
k−1

p=1
C

k−1+p

l=2p
a l−pA (p, l)i (b) k (p, l)a |(T −1i )Œ (b)|, T

−1
i (b)

(t)+(R i, ka, b)(t) (52)

where k (p, l)(t)=t lk (p)(t) is a compactly supported wavelet,

A (p, l)i (b)=
1
p!

|(T−1i )Œ (b)| l+1 C
2 [ q1,..., qp [ k
q1+· · ·+qp=l

D
p

m=1

T (qm)i (T−1i (b))
qm!

|A (p, l)i (b)| [ C |Ii |p−l−1

and (R i, ka, b) is a function supported in |t − T−1i (b)| [ Ca |Ii |−1 such that

|(R i, ka, b)(t)| [ Cak−1 |Ii |−k -t (53)

and

||(R i, ka, b)(t)||L1(R) [ Cak |Ii |−k−1 (54)

The previous lemma allows the estimation of the size of the wavelet
transform near each point of K. Let j0 be a branch of BJ(x) for which
LJ(x)=supi ¥ BJ(x) |li | is reached (j0 exists because of Lemma 5).
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The assumption (32) taken in Remark 2 together with Remark 3 imply
that

(bn)n … K+] − e, e[ (55)

where e is a constant small enough. Take b=Tj 0(bn) for n large enough and
a=an |T −j 0(bn)|, then

b ¥ Ij 0, a ’ an |Ij 0 | ’ 2−J

and

|x − b| [ |x − xj 0 |+|xj 0 − b| [ L2−J+|Ij 0 | [ C2−J [ Ca

Remark 4.

|bn − x0 | [ an implies that |b − Tj 0(x0)| [ Can |Ij 0 | (56)

Since x0 ¥ K then Tj 0(x0) ¥ K. Relations (55) and (56) imply that b is near
both K and Tj 0(x0).

Remark 5. If Hi denotes a ‘‘hole’’ in Ii, then by argument similar to
the one given in the proof of Lemma 1, we get (see refs. 23 and 24)

D−1 |Hi | [ |T −i(x)| [D |Hi | -x ¥ I , |i|=n and n ¥Ng

Thus, Lemma 1 implies that

|Hi | \D−2 |Ii | - |i|=n and n ¥Ng (57)

• If ‘‘0 [ j [ J − 1, i ¥ Bj and b ¨ Ii’’ or ‘‘i ¥ BJ, b ¨ Ii and |i| [ | j0|’’
then, from Remark 5 and the fact that b ¥ Ij 0, we have

dist(b, Ii) \ |Hi | \ C |Ii | \ C |Ij 0 | (58)

We deduce that |Ti(t) − b| \ C |Ij 0 | for all t ¥ I, and since a ’ an |Ij 0 | and
k has compact support then taking an small enough the corresponding
integrals in (50) and (51) vanish.

• If i ¥ BJ, b ¨ Ii and i=(j0, 2, 2) or i=(j0, 1, 1) then

dist(b, Ii) \ |Hi | \ C |Ii | \ C |Ij 0 | (59)

Hence the corresponding integrals in (51) vanish.
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• If i ¥ BJ, b ¨ Ii and i=(j0, 2, 1,..., 1, 2) (resp. i=(j0, 1, 2,...2, 1))
then

dist(b, Ii) \ |H(j 0, 2, 1,..., 1) | \ C |I(j 0, 2, 1,..., 1) | (60)

(resp. dist(b, Ii) \ |H(j 0, 1, 2,..., 2) | \ C |I(j 0, 1, 2,..., 2) |) (61)

In view of Lemma 2 and the fact that i ¥ BJ and j0 ¥ BJ, the length
of the stretch of ones (resp. 2’s) is independently bounded, so |I(j 0, 2, 1,..., 1) | \
C |Ij 0 | (resp. |I(j 0, 1, 2,..., 2) | \ C |Ij 0 |), we deduce that |Ti(t) − b| \ C |Ij 0 | for all
t ¥ I, and since a ’ an |Ij 0 | and k has compact support then taking an small
enough the corresponding integrals in (51) vanish.

• If i ¥ BJ, b ¨ Ii and i=(j0, 2, 1,..., 1) (resp. i=(j0, 1, 2,..., 2)) then

:li F
Ii

k̄a, b(t) FJ(T−1i (t)) dt : [ C |lj 0 | [ CLJ(x) (62)

As above, the length of the stretch of ones (resp. 2’s) is independently
bounded. So, the contribution of all these branches is O(LJ(x)).

Now, remark that if i ¥ Bj (resp. i ¥ BJ) and b ¥ Ii then i ¥ Bj(b) (resp.
i ¥ BJ(b)).

Let C (p, l)
a, b (F) be the k (p, l)-wavelet transform of F. Using (50), (51) and

Lemma 6, the k-wavelet transform of F will satisfy the following (‘‘wavelet
quasi-self-similar’’) relation

Ca, b(F)=O(LJ(x)) (63)

+C
J−1

j=0
C

i ¥ Bj(b)
li |(T−1i )Œ (b)| Ca |(T −1i )Œ (b)|, T −1i (b)(gT −i) (64)

+ C
i ¥ BJ(b)

li |(T−1i )Œ (b)| Ca |(T −1i )Œ (b)|, T −1i (b)(FJT
−

i) (65)

+ C
k−1

p=1
C

k−1+p

l=2p
a l−p C

J−1

j=0
C

i ¥ Bj(b)
liA

(p, l)
i (b) C (p, l)

a |(T −1i )Œ (b)|, T
−1
i (b)

(gT −i)
(66)

+ C
k−1

p=1
C

k−1+p

l=2p
a l−p C

i ¥ BJ(b)
liA

(p, l)
i (b) C (p, l)

a |(T −1i )Œ (b)|, T
−1
i (b)

(FJT
−

i) (67)

+C
J−1

j=0
C

i ¥ Bj(b)
li F (R i, ka, b)(t) g(t) T −i(t) dt (68)

+ C
i ¥ BJ(b)

li F (R i, ka, b)(t) FJ(t) T −i(t) dt (69)
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We will show that the wavelet transform of F is large near the branch j0,
and that the term (65) corresponding to the branch i=j0 is the main term
in the ‘‘wavelet quasi-self-similar’’ relation. We first prove that for n large
enough

|lj 0 | |(T−1j0 )Œ (b)| |Ca |(T −1j0 )Œ (b)|, T −1j0 (b)(FJT
−

j 0)| \
Cn
2

LJ(x) (70)

From (32) and the fact that b=Tj 0(bn) and a=an |T −j 0(bn)|, we have

|Ca |(T −1j0 )Œ (b)|, T −1j0 (b)(FJ)| \ Cnak |(T−1j0 )Œ (b)|k (71)

On the other hand,

|(T−1j0 )Œ (b)| |Ca |(T −1j0 )Œ (b)|, T −1j0 (b)(FJT
−

j 0)|

=
1
a
: F k 1 t − T−1j0 (b)

a(T−1j0 )Œ (b)
2 FJ(t) T −j 0(t) dt :

=
1
a
: F k 1 t − T−1j0 (b)

a(T−1j0 )Œ (b)
2 FJ(t) (T −j 0(T−1j0 (b))+O(2)

j 0 (|t − T−1j0 (b)|)) dt :

with

O (2)
j 0 (|t − T−1j0 (b)|) [ (sup |T'j 0(u)|) |t − T−1j0 (b)|

[ C |Ij 0 | |t − T−1j0 (b)|

[ C|T −j 0(T−1j0 (b))| |t − T−1j0 (b)|

Thus

|(T−1j0 )Œ (b)| |Ca |(T −1j0 )Œ (b)|, T −1j0 (b)(FJT
−

j 0)|

\
1

a |(T−1j0 )Œ (b)|
: F k 1 t − T−1j0 (b)

a(T−1j0 )Œ (b)
2 FJ(t) dt :

− C
1

a |(T−1j0 )Œ (b)|
F :k 1 t − T−1j0 (b)

a(T−1j0 )Œ (b)
2: |FJ(t)| |t − T−1j0 (b)| dt

From (71) and the fact that FJ is bounded independently of J and
a |(T−1j0 )Œ (b)| ’ 1 it follows that

|(T−1j0 )Œ (b)| |Ca |(T −1j0 )Œ (b)|, T −1j0 (b)(FJT
−

j 0)| \ Cnak |(T−1j0 )Œ (b)|k− C

Hence, for n large enough (70) holds.
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Consider now the term (65) for which we exclude the branch i=j0.
Since a |(T−1i )Œ (b)| ’ 1 and FJ is bounded independently of J, then

|(T−1i )Œ (b)| |Ca |(T −1i )Œ (b)|, T −1i (b)(FJT
−

i)| [ C

From Lemma 5 and the fact that the branches i we consider are in BJ(b), it
follows that

C
i ¥ BJ
i ] j0

|li | |(T−1i )Œ (b)| |Ca |(T −1i )Œ (b)|, T −1i (b)(FJT
−

i)| [ CL̃J(b) (72)

Now, let us estimate the righthand side of (64). We will prove that for
0 [ j [ J − 1 and i ¥ Bj the terms |(T−1i )Œ (b)| |Ca |(T −1i )Œ (b)|, T −1i (b)(gT −i)| decay
like (a |(T−1i )Œ (b)|)k because of the smoothness of g (i.e., g ¥ Ck(R)) and
the cancellation of the wavelet. This will imply that the righthand side of
(64) is bounded by CL̃J(b).

For 0 [ j [ J − 1 and i ¥ Bj, we have

|(T−1i )Œ (b)| |Ca |(T −1i )Œ (b)|, T −1i (b)(gT −i)|

=
1
a
: F k 1 t − T−1i (b)

a(T−1i )Œ (b)
2 g(t) T −i(t) dt :

=
1
a
: F k 1 t − T−1i (b)

a(T−1i )Œ (b)
2 (g(t) T −i(t) − Pk−1(gT −i)T−1i (b) (t − T−1i (b))) dt :

Using the mean value theorem, the previous term will be bounded by

1
a
F :k 1 t − T−1i (b)

a(T−1i )Œ (b)
2: ( sup

u ¥ [t, T −1i (b)]
|(gT −i)

(k) (u)|) |t − T−1i (b)|k dt

From both formula

(gT −i)
(k) (u)= C

k

q=0
Cq
k g (k−q)(u) T (q+1)i (u)

Lemmas 1 and 4 and the fact that g has compact support, it follows that

|(gT −i)
(k) (u)| [ C |Ii |

So |(T−1i )Œ (b)| |Ca |(T −1i )Œ (b)|, T −1i (b)(gT −i)| is bounded by

C
a |(T−1i )Œ (b)|

F :k 1 t − T−1i (b)
a(T−1i )Œ (b)

2: |t − T−1i (b)|k dt [ Cak2kj
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Thus for 0 [ j [ J − 1

C
i ¥ Bj

|li | |(T−1i )Œ (b)| |Ca |(T −1i )Œ (b)|, T −1i (b)(gT −i)| [ C C
i ¥ Bj(b)

|li | ak2kj

which by Lemma 5 will be bounded by Cak2kjL̃j(b).
Therefore, (48) and the assumption a(x) < k imply that

C
j [ J−1

C
i ¥ Bj

|li | |(T−1i )Œ (b)| |Ca |(T −1i )Œ (b)|, T −1i (b)(gT −i)| [ Cak C
j [ J−1

2kjL̃j(b)

[ Cak2kJL̃J(b)

Hence

C
j [ J−1

C
i ¥ Bj

|li | |(T−1i )Œ (b)| |Ca |(T −1i )Œ (b)|, T −1i (b)(gT −i)| [ CL̃J(b) (73)

Let us now estimate the terms (66) and (67). Thanks to the property
|A (p, l)i | [ |Ii |p−l−1, the previous arguments give us

C
k−1

p=1
C

k−1+p

l=2p
a l−p C

i ¥ BJ
i ] j0

|li | |A (p, l)i (b)| |C (p, l)
a |(T −1i )Œ (b)|, T

−1
i (b)

(FJT
−

i)|

[ C C
k−1

p=1
C

k−1+p

l=2p
a l−pL̃J(b) ap−l−1a

[ CL̃J(b)

and

C
k−1

p=1
C

k−1+p

l=2p
a l−p C

J−1

j=0
C
i ¥ Bj

|li | |A (p, l)i (b)| |C (p, l)
a |(T −1i )Œ (b)|, T

−1
i (b)

(gT −i)|

[ C C
k−1

p=1
C

k−1+p

l=2p
a l−p C

J−1

j=0
C

i ¥ Bj(b)
|li | |Ii |p−l |(T−1i )Œ (b)| |C (p, l)

a |(T −1i )Œ (b)|, T
−1
i (b)

(gT −i)|

[ C C
k−1

p=1
C

k−1+p

l=2p
a l−p C

J−1

j=0
L̃j(b) |Ii |p−l ak2kj

[ C C
k−1

p=1
C

k−1+p

l=2p
ak+l−p C

J−1

j=0
L̃j(b) 2 j(k+l−p)

[ C C
k−1

p=1
C

k−1+p

l=2p
ak+l−pL̃J(b) 2J(k+l−p)

[ CL̃J(b)
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On the other hand, since FJ is bounded independently of J, then

C
k−1

p=1
C

k−1+p

l=2p
a l−p |lj 0 | |A (p, l)j 0 (b)| |C (p, l)

a |(T −1j0 )Œ (b)|, T
−1
j0 (b)

(FJT
−

j 0)|

[ C C
k−1

p=1
C

k−1+p

l=2p
a l−pLJ(x) ap−l−1a

[ CLJ(x)

For the term (68), we bound it by

C
J−1

j=0
C

i ¥ Bj(b)
|li | F |(R i, ka, b)(t)| |T −i(t)| dt [ C C

J−1

j=0
C

i ¥ Bj(b)
|li | ||(R i, ka, b)(t)||L1(R) 2−j

which by (54) will be bounded by

C C
J−1

j=0
L̃j(b) ak2 (k+1) j2−j [ CL̃J(b)

For the term (69), we use the fact that FJ is bounded independently of
J to estimate it by

C C
i ¥ BJ(b)

|li | ak2 (k+1) J2−J [ CL̃J(b)

Now, from the previous estimations, we get

|Ca, b(F) − lj 0 |(T−1j0 )Œ (b)| Ca |(T −1j0 )Œ (b)|, T −1j0 (b)(FJT
−

j 0)| [ CL̃J(b)

Choose Cn large enough, then (70) yields

|Ca, b(F)| \ 1
2 |lj 0 | |(T−1j0 )Œ (b)| |Ca |(T −1j0 )Œ (b)|, T −1j0 (b)(FJT

−

j 0)| (74)

Whence (70) and (74) yield Proposition 3. And thanks to (3), this proposi-
tion yields the upper bound for the Hölder exponent. L

4.2. Lower Bound for Pointwise Hölder Regularity

To obtain a lower bound for aF(x), we will use definition (1). We
separate two cases. In the first one (we denote it case 1), we assume that at
least we have a middle ‘‘hole,’’ i.e., T1(I)=[a1, a2] and T2(I)=[a3, a4]
with 0 [ a1 < a2 < a3 < a4 [ 1. In the second case (we denote it case 2),
we assume that we have three ‘‘holes,’’ in the sense that, T1(I)=[a1, a2]
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and T2(I)=[a3, a4] with 0 < a1 < a2 < a3 < a4 < 1. The main difference
between the results of these cases is that in the first one we restrict the
proof of the lower bound of the Hölder exponent on a (large) subset R of
K (see below), which excludes points of K associated to very long but finite
stretches of ones and 2’s in their codes. Nevertheless, this exclusion does
not affect the computation of the spectrum of singularities.

4.2.1. Case 1. T1(I)=[a1, a2] and T2(I)=[a3, a4] with
0 [ a1 < a2 < a3 < a4 [ 1

Given x ¥ [0, 1] and N ¥Ng, we define

L1N(x)=˛0 if iN(x)=2

L if iN(x)=iN+1(x)= · · · =iN+L−1(x)=1
(75)

Clearly L1N(x) is the length of the uninterrupted stretch of ones following
(and including) iN(x). We define L2N(x) analogously as the length of the
stretch of 2’s following iN(x).

We shall restrict ourselves to the set R :={x ¥ K; limNQ+.
L1N(x)
N =

limNQ+.
L2N(x)
N =0}.

Theorem 3. If x ¥R then aF(x) \ a(x).

Proof of Theorem 3. Using definition (1), we will prove the lower
bound for the Hölder exponent aF(x). Let x ¥ K. For b < a(x), define

P[b]Fx(h)=C
.

j=0
C
i ¥ Bj

liP[b](g p T−1i )x (h)

as in (40). Thanks to (42)

|P[b]Fx(h)| [ C
.

j=0
L̃j(x) 2 j[b]

and since b < a(x), then (48) implies that P[b]Fx(h) converges.
Let i(n, x)=(i1(x),..., in(x)), J such that 2−J [ |h| < 2.2−J and let N be

the largest integer such that x+h ¥ Ii(N, x). We have |h|=|x+h − x| [ |Ii(N, x) |
and x+h ¨ Ii(N+1, x). So,

F(x+h)= C
N

n=0
li(n, x) g(T−1i(n, x)(x+h)) and

P[b]Fx(h)= C
.

n=0
li(n, x)P[b](g p T−1i )x (h)
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We have

F(x+h) − P[b]Fx(h)= C
N

n=0
li(n, x)(g(T−1i (x+h)) − P[b](g p T−1i )x (h)) (76)

− C
n \N+1

li(n, x)P[b](g p T−1i )x (h) (77)

The first term (76) is bounded by

C |h|[b]+1 C
N

n=0
|li(n, x) | |Ii(n, x) |−([b]+1) (78)

Let n0 such that |li(n, x) | [ |Ii(n, x) | (a(x)− e) -n \ n0, then (78) is bounded by

C |h|[b]+1 C
n0

n=0
|li(n, x) | |Ii(n, x) |−([b]+1)+ C

N

n=n0

|Ii(n, x) |a(x)− e−([b]+1) if N \ n0
(79)

C |h|[b]+1 C
N

n=0
|li(n, x) | |Ii(n, x) |−([b]+1) if N [ n0 (80)

The term (80) (resp. (79)) is bounded by C |h|b (resp. C |h|[b]+1 (1+
;N
n=n0 |Ii(n, x) |b−([b]+1))).

But for eŒ=−b+[b]+1, in view of Lemma 2, we have

D−eŒ |Ii(n, x) |−eŒ |Iin+1 |
−eŒ [ |Ii(n+1, x) |−eŒ [D eŒ |Ii(n, x) |−eŒ |Iin+1 |

−eŒ

Without any loss of generality, we can assume that h < 0. Thus from
the definition of N, iN+1(x)=2.

If iN+1(x+h)=1 then |h| \ |Hi(N, x) | \ C |Ii(N, x) |.
If iN+2(x)=1=iN+2(x)= · · · =iN+L1N+2(x)(x) and iN+L1N+2(x)+1(x)=2.
Using (57) we obtain, |h| \ |Hi(N+L1N+2(x), x) | \ C |Ii(N+L1N+2(x), x) | \

CD−L1N+2(x) |Ii(N, x) |.
Since x ¥R, then limN0+.

L1N+2(x)
N =0. Let e > 0, there exists N0 such

that for all N \ N0, L1N+2(x) [ eN. Hence

|h| \ CD−eN |Ii(N, x) | (81)

Hence, if JŒ is such that 2−JŒ [ |Ii(N, x) | < 2.2−JŒ, then |JŒ− J| [ C, with C a
constant. Now, we can write

C
n [N

|Ii(n, x) |−eŒ ’ C
j [ JŒ

C
i ¥ Bj(x)

|Ii |−eŒ [ C C
j [ JŒ

2 jeŒ [ C2JŒeŒ
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Thus, if N \ 0 then

C |h|[b]+1 11+ C
N

n=n0

|Ii(n, x) |b−([b]+1)2 [ C |h|[b]+1 (1+2−JŒ(b−[b]−1))

[ C |h|b+C |h|[b]+1 2−JŒ(b−[b]−1)

[ C |h|b+C2 (JŒ−J)([b]+1)2−JŒb

[ C |h|b+C |Ii(N, x) |b

[ C |h|b− e (thanks to (81))

On the other hand, for the term (77), we have

C
j > JŒ

C
i ¥ Bj(x)

|li | C
[b]

q=0
|Ii |−q |h|q [ C C

j > JŒ
2−bj 1 C

[b]

q=0
2qj2−qJŒ2

[ C C
j > JŒ

2−bj2[b] j2−[b] JŒ

[ C2−bJŒ

[ C |Ii(N, x) |b

[ C |h|b− e

Consequently

|F(x+h) − P[b]Fx(h)| [ C |h|b− e (82)

Hence Theorem 3. L

4.2.2. Case 2. T1(I)=[a1, a2] and T2(I)=[a3, a4] with
0 < a1 < a2 < a3 < a4 < 1

Theorem 4. If x ¥ K then aF(x) \ a(x).

Denote by (l − H)i, (m − H)i and (r − H)i respectively the left, middle,
and right ‘‘holes’’ in Ii, i.e.,

Ii=(l − H)i 2 Ii, 1 2 (m − H)i 2 Ii, 2 2 (r − H)i

Relation (57) implies that

|(v − H)i | \D−2 |Ii | -v ¥ {l, m, r}, |i|=n and n ¥Ng (83)
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We have |h|=|x+h − x| [ |I(i1(x),..., iN(x)) | and x+h ¨ I(i1(x),..., iN(x), iN+1(x)). Here

|h| \ |(l − H)(i1(x),..., iN+1(x)) | if h < 0

and

|h| \ |(r − H)(i1(x),..., iN+1(x)) | if h > 0

So, we obtain

|h| \D−2 |I(i1(x),..., iN(x), iN+1(x)) |

\D−2D−1 |I(i1(x),..., iN(x)) | |IiN+1(x) |

\D−3h |I(i1(x),..., iN(x)) |

Hence if JŒ is such that 2−JŒ [ |I(i1(x),..., iN(x)) | < 2.2−JŒ, then |JŒ− J| [ C, with
C a constant. Now, we can write

F(x+h) − P[b]Fx(h)= C
j < JŒ

C
{i ¥ Bj : x ¥ Ii}

li(g(T−1i (x+h)) − P[b](g p T−1i )x (h))

+ C
{i ¥ BJŒ : x ¥ Ii}

liFJŒ(T−1i (x+h))

− C
j \ JŒ

C
i ¥ Bj

liP[b](g p T−1i )x (h)

For each j of the series of the first term, there is a finite terms, thus if j0
is such that L̃j(x) [ 2−j(a(x)− E) for all j \ j0, then using the mean value
theorem and (42), the first term will be bounded by

C C
j < JŒ

L̃j(x) |h|[b]+1 2 j([b]+1)

[ C |h|[b]+1 C
j < j0

L̃j(x) 2 j([b]+1)+C |h|[b]+1 C
j0 [ j < JŒ

2−bj2 j([b]+1)

[ C |h|[b]+1+C |h|[b]+1 2−bJŒ2JŒ([b]+1)

[ C |h|b (because |JŒ− J| [ C)

It follows from the fact that FJŒ is bounded independently of JŒ that
the second term is bounded by CLJŒ(x), so by C2−JŒ(b− E), hence by C |h|b− e.
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The third term is bounded by

C
j \ JŒ

C
i ¥ Bj(x)

|li | C
[b]

q=0
|Ii |−q |h|q [ C

j \ JŒ
Lj(x) C

[b]

q=0
2qj2−qJ

[ C C
j \ JŒ

2−bj2[b] j2−[b] J

[ C |h|b

The proof of Theorem 4 is now achieved. L

5. COMPUTATION OF THE SPECTRUM OF SINGULARITIES

We only study case 2, for case 1 the restriction to R has no conse-
quence on d(a) as in ref. 20. We consider a sequence {Fn} of finite parti-
tions {Vi} of [0, 1[ constituted of right-open intervals Ĩ(i1,..., in) and H̃(i1,..., in)
deduced from the intervals I(i1,..., in) and holes H(i1,..., in), i.e.,

F0={[0, 1[},

F1={[0, a1[, [a1, a2[=Ĩ1, [a2, a3[, [a3, a4[=Ĩ2, [a4, 1[}

F2={[0, a1[, (l − H6 )1, Ĩ11, (m − H6 )1, Ĩ12, (r − H6 )1, [a2, a3[, (l − H6 )2,

Ĩ21, (m − H6 )2, Ĩ22, (r − H6 )2, [a4, 1[}

and so on. If t ¥ [0, 1[, let Ĩn(t) be the element of Fn which contains t.
Here, Fn+1 is a refinement of Fn and |Ĩn(t)| 0 0 when n Q +..

We denote dim the Hausdorff dimension limited by recovering of
elements F=1n Fn.

Theorem 5. If a ¨ [amin, amax], then d(a)=−..
Suppose that K

¯
(p, j(p)) > 0. Let a ¥ [amin, amax] such that a < k. If j

is derivable at p and if a=jŒ(p) then

d(a)=ap − j(p)=inf
x

(ax − j(x))

Proof of Theorem 5. The first point is straightforward because
EaF=”.

Let now a ¥ [amin, amax] such that a < k. If j is derivable at p and if
a=jŒ(p) < k then the upper bound

d(a) [ inf
x

(ax − j(x))

follows from ref. 27, Theorem 1, pp. 780 (see also refs. 24 and 31).
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Let now t: F0 R+. Set

H(t)=lim inf
eQ 0

3C
j

t(Vj); {Vj} is a e-recovering of [0, 1[4

We say that t is a Frostman function if H(t) > 0 and if 0 is an adherence
value of the sequence (supV ¥Fn

t(V))n.

Lemma 7 (cf. ref. 28). If t is a Frostman function, there exist a
probability measure n on [0, 1[, a constant M > 0 and a number e > 0 such
that

-V ¥F, |V| [ e: n(V) [ Mt(V) (84)

We consider the following sets:

Ẽa=3 t ¥ [0, 1[; lim
nQ+.

log |l1i1 · · · lnin |

log |Ĩ(i1,..., in)(t)|
=a4

and

Ēa=3 t ¥ [0, 1[; lim inf
nQ+.

log |l1i1 · · · lnin |

log |Ĩ(i1,..., in)(t)|
=a4

(with the ordinary precaution: log 0log g=+. if g > 0).
For n ¥Ng and i=(i1,..., in) ¥ {1, 2}n take

t(V)=˛0 if V=H̃(i1,..., in)
|l1i1 · · · lnin |

x |V|−j(x) if V=Ĩ(i1,..., in)
(85)

Since K
¯

(p, j(p)) > 0, then H(t) > 0. In addition 0 is an adherence
value of the sequence (supV ¥Fn

t(V))n, because Fn+1 is a refinement of Fn
and -V ¥F, |V| 0 0 when n Q +.. Thus t is a Frostman function, so the
results of Lemma 7 hold.

Let

E1 a=3 t ¥ [0, 1[; lim inf
nQ+.

log n(Ĩn(t))

log |Ĩn(t)|
\ inf

x
(ax − j(x))4

It follows from (84) and (85) that Ẽa … E1 a. On the other hand, (84)
yields that n(Ẽa) > 0. Whence, thanks to the Billingsly theorem, (32) we have

dim Ẽa \ inf
x

(ax − j(x))
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But

Ẽa … Ēa … EaF

and

Ēa=EaF0N with N=3
+.

n=1
0
|i|=n

(Ii0 Ĩi)

Since N is countable then d(a)=dim EaF=dim Ēa. Hence d(a) \
infx(ax − j(x)). L

6. VALIDITY OF THE MULTI-FRACTAL FORMALISM

Theorem 6. If j(q)+1 < kq then g(q)=j(q)+1.
Let a ¥ [amin, amax] such that a < k. If j(p)+1 < kp, j is derivable at p

and K
¯

(p, j(p)) > 0, then for a=jŒ(p), we have

d(a)=ap − g(p)+1= inf
q: j(q)+1 < kq

(aq − g(q)+1)

Proof of Theorem 6. To compute g(q), we have to estimate the size
of the wavelet transform everywhere. For i=(i1,..., in), consider

Ii(a)=Ii+] − a, a[

and

Ci=I(i1,..., in−1)(a) − I(i1,..., in−1, in)(a)

If i ¥ Bj and a [ |Ii | then |Ii(a)| ’ |Ii |, |Ci | [ |Ii | and inequalities (70)
and (74) show that there exists a ’ 2−j and a point b of Ii(a) for which the
order of magnitude of Ca, b(F) is Lj(b).

We can also deduce the following lemma from (27) and an argument
similar to the proof of Proposition 3.

Lemma 8. If i ¥ Bj, a ’ |Ii | and b ¥ Ii(a) then |Ca, b(F)| [ CL̃j(b).
If a [ |Ii | and b ¥ Ci then |Ca, b(F)| [ Cak |Ii |−k L̃j(b).

On the other hand, remark that

d
db

Ca, b=
1
a

C̃a, b
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where C̃a, b is the wavelet transform due to kŒ, and

d
da

Ca, b=−
1
a

C̆a, b+
1
a

Ca, b

where C̆a, b is the wavelet transform due to xkŒ.
We deduce that there exists an interval of length ’ a on which the

order of magnitude of Ca, b(F) is Lj(b). Thus if we denote by Aj the inter-
val [12 2−j, 2−j], then for each branch i ¥ Bj there exists a ball of radius
’ 2−j in the time frequency half-space R+×R, located near xi and in
frequency in the interval Aj and where

|Ca, b(F)| \ CŒ |li |

From Lemma 8 and the previous remark, we obtain

CŒ C
i ¥ Bj

2−2j |li |q [ F
Aj ×R

|Ca, b(F)|q da db (86)

[ C C
i ¥ Bj

2−2j |li |q+O 12−j C
|Ii| \ 2.2

−j
|Ii | |li |q 2−kqj |Ii |−kq2

[ C2−j 5 C
i ¥ Bj

2−j |li |q+O 1 C
|Ii| \ 2.2

−j
2−kqj |li |q |Ii |1−kq26 (87)

where O( · ) is positive.
The properties of Cn(x, y), implies that the function j: R0 R given

by (36) is non-decreasing and concave and satisfies C(x, j(x))=0 for any
x (see ref. 31). Then we have

0=C(q, j(q))= lim
nQ.

1
n

log 1 C
|i|=n

|li |q |Ii |−j(q)2

so we can write

log 1 C
|i|=n

|li |q |Ii |−j(q)2 :=o 11
n
2

thus

C
|i|=n

|li |q |Ii |−j(q)=eo(
1
n)
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Define

G(j)= C
i ¥ Bj

|li |q |Ii |−j(q)

It follows from (18) that for i ¥ Bj,

j
log 2

log h−1
−

log 2D
log h−1

< |i| [ j
log 2

log r−1
+

log D

log r−1
(88)

Hence

CŒeo(
1
j) [ G(j) [ Cjeo(

1
j) (89)

Therefore

2−j C
i ¥ Bj

2−j |li |q ’ 2−j2−(1+j(q)) j C
i ¥ Bj

|li |q |Ii |−j(q)

=2−j2−(1+j(q)) jG(j)

[ Cjeo(
1
j)2−j2−(1+j(q)) j (90)

and

2−j C
i ¥ Bj

2−j |li |q \ CŒeo(
1
j)2−j2−(1+j(q)) j (91)

The term

2−jO 1 C
|Ii| \ 2.2

−j
|li |q 2−kqj |Ii |1−kq2 (92)

is positive and bounded by

C2−j2−kqj C
|Ii| \ 2.2

−j
|li |q |Ii |1−kq

=C2−j2−kqj C
l [ j−2

C
2 −l−1 [ |Ii| < 2

−l
|li |q |Ii |1−kq

’ C2−j2−kqj C
l [ j−2

2−l(1−kq+j(q)) C
2 −l−1 [ |Ii| < 2

−l
|li |q |Ii |−j(q)

[ C2−j2−kqj C
l [ j

2−l(1−kq+j(q))G(l)

thus if j(q)+1 < kq then (92) is bounded by Cjeo(
1
j)2−(1+j(q)) j2−j.
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Hence

CŒ2−jeo(
1
j)2−(1+j(q)) j [ F

Aj ×R
|Ca, b |q da db [ Cj2−jeo(

1
j)2−(1+j(q)) j (93)

Using (93) and the fact that limjQ.

o(1j)

j =0, we obtain

lim sup
aQ 0

a−(1+j(q))eo(
1
log a
) F

R
|Ca, b |q db \ CŒ > 0 (94)

and

lim sup
aQ 0

a−(1+j(q))

|log a|
eo(

1
log a
) F

R
|Ca, b |q db [ C < +. (95)

Therefore, if j(q)+1 < kq then g(q)=j(q)+1. Whence, in view of
Theorem 5, the multi-fractal formalism is valid. L

7. BOX DIMENSION OF THE GRAPH

We first recall a recent result of Jaffard (see ref. 33) in which he com-
puted the box dimension of the graph of a function from its wavelet coef-
ficients. Let S be a bounded subset in Rm+1. Denote by N(S, j) the number
of dyadic cubes of side 2−j necessary to cover S. The upper box dimension
of S (also called fractal dimension) is

dimB(S)=lim sup
jQ.

log N(S, j)
j log 2

(96)

Let 2mj/2k (i)(2 jx − k), (i=1,..., 2m− 1, j ¥ Z, k ¥ Zm) be an orthonormal
basis of L2(Rm). Let f ¥ L2(Rm). We use a L.-normalization for wavelets,
so that we write

f(x)= C
i, j, k

C (i)
j, kk

(i)(2 jx − k) (97)

where

C (i)
j, k=2mj F f(t) k (i)(2 jx − k) dt (98)

Suppose furthermore that the k (i) and their gradients decay as x−2 at infi-
nity. Denote by dj, k the dyadic cube k2−j+2−j[0, 1]m. In ref. 33, Jaffard
proved the following result.
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Proposition 4. Let f: Rm0 R be a function in C e(Rm) for e > 0.
Let W be a bounded domain of Rm with a Lipschitz boundary. If

wj(W)= C
dj, k ¥ W

sup
djŒ, kŒ … dj, k

|C (i)
j, k |

then

dimB(GraphW(f))=sup 1m, 1+lim sup
jQ.

log wj(W)
j log 2
2

But, our quasi-self-similar functions (we assume that the lni are reals)
are not expressed in the form (97) because g is not necessary a wavelet.
Therefore we can not directly apply Proposition 4. However, if 2−j [
a < 2.2−j and b=k2−j, then >Rm |Ca, b(F)| db ’ 1

2jm
;k |Cj, k(F)|. This allows

us to generalize Proposition 4 in the continuous form and then take
advantage of the estimation of Ca, b(F) established in Section 6.

Proposition 5. Let f: Rm0 R be a function in C e(Rm) for e > 0.
Let W is a bounded domain of Rm with Lipschitz boundary. Then

dimB(GraphW(f))=sup 1m, 2+lim sup
aQ 0

log > wa, b db
log 1a
2

where wa, b is the supremum of the |CaŒ, bŒ | on a box centered on b and of
side a.

We are now ready to compute the fractal dimension of the graph of a
(real) quasi-self-similar function F.

Theorem 7. If j(1)+1 < k, then dimB(GraphI(F))=sup(1, 1 −
j(1)).

Proof of Theorem 7. The function F is in Camin− e(R) for e > 0.
In addition, using the same technique as in Section 6, we deduce that if
j(1)+1 < k then > wa, b db ’ a1+j(1).

So,

lim sup
aQ 0

log > wa, b db
log 1a

=−1 − j(1)

Hence Theorem 7. L
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8. SUMMARY, DETERMINISTIC AND RANDOM EXAMPLES,

APPLICATIONS, AND PROSPECTS

We introduced the notion of quasi-self-similarity that extends the
classical definition of self-similarity. Quasi-self-similar functions (26) are
superposition of ‘‘similar’’ structures at different scales, reminiscent of
some cascade models, but the weight associated to each structure can be
chosen with some freedom as compared to the exact self-similar situation.
In the spirit of wavelet analysis, the wavelet coefficients of quasi-self-
similar functions are multiplicative weights that are allowed to depend on
the generation. We used the special expression (26) of F and the iterated
quasi-self-similar functional equation (27) to prove that the wavelet trans-
form of F satisfies a similar ‘‘quasi-self-similar’’ functional equation, which
enables us to estimate the size of the wavelet transform everywhere. This
allows us to compute both the Hölder exponent aF(x) for any point x and
the Besov exponent g(p). Using the ‘‘Frostman method,’’ we established
the validity of the multi-fractal formalism for quasi-self-similar functions:
the singularity spectrum d(a) that is the Hausdorff dimension of the set
of iso-Hölder regularity a can be obtained as the Legendre transform of
g(p) − 1. We also proved that g(p) − 1=j(p) where the scaling exponent
j(p) is defined from the asymptotic scaling of some multi-temperature
partition functions.

The previous quasi-self-similar cascades are continuous, i.e., without
preferable scale factors (continuous scale invariance). One can also distin-
guish discrete cascades that involve discrete scale invariance. Using argu-
ments similar to those of this paper and those of the Jaffard’s paper, (12) all
the above results (with obvious modifications) remain valid for quasi-self-
affine functions

F(x)= C
.

n=0
C

i=(i1,..., in) ¥ {1,..., d}
n

l1i1 · · · lnin g(S−1i (x)) (99)

where the Sj’s for j=1,..., d are contractive similitudes satisfying condi-
tions (13) and (14), the function g is Ck with all derivatives of order less
than k having fast decay, and the FN’s corresponding to F satisfy (32).

Each time the multi-fractal formalism has been shown to hold, it was
the consequence of some self-similarity (deterministic or statistic) either for
the function or of its wavelet transform. It is therefore reasonable to
conjecture that if a function satisfies some self-similarity condition, then
the multi-fractal formalism is likely to hold. But it is impossible to state a
reasonably general conjecture (one should be careful to avoid in such a
statement the counterexamples exhibited by Ben Slimane in refs. 14–16).
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If we allow the li to be chosen along a whole tree, i.e., if F is written

F(x)= C
.

n=0
C

i=(i1,..., in) ¥ {1,..., d}
n

l(i1,..., in) g(S−1i (x)) (100)

then in general F does not satisfy any quasi-self-similar equation. There-
fore, it is not easy to determine analytically both the Hölder and Besov
exponents. Besides, Jaffard (34) (resp. Arneodo et al. (35)) constructed some
families of random (resp. deterministic) wavelet series of the form (100) for
which the multi-fractal formalism does not hold.

Since quasi-self-similar (resp. quasi-self-affine) functions include a
definitely larger class than the strict self-similar notion, one can expects a
great number of applications of this work. The success of wavelet tech-
niques in many fields of applications is due to the fact that, many signals,
images, or mathematical functions f can be accurately represented in a
wavelet basis. We can try to approximate f by a quasi-self-similar wavelet
series. A quasi-self-similar wavelet series is built recursively on the dyadic
grid of the orthogonal wavelet transform, involving only scales that range
between a given large scale L and the scale 0 (excluded). Thus the corre-
sponding fractal function f(x) does not involve scales greater than L.
Consider, for the sake of simplicity, a periodic function f(x) of period L.
Choose L=1. The quasi-self-similar wavelet series is defined using a
periodic orthonormal wavelet basis of L2per([0, 1]), i.e., the space of
1-periodic functions with finite energy.

Such a basis can be constructed using two functions f(x) and k(x)
of L2per([0, 1]) (k is referred to as the analyzing wavelet) by means of
translations and dilations of k(x)

kj, k=2 j/2k(2 jx − k), j \ 0, 0 [ k [ 2 j− 1 (101)

One can prove that the so-obtained family of functions {f(x), {kj, k}j, k} is
an orthonormal basis of L2per([0, 1]) if f(x) and k satisfy some conditions.
Among these conditions, k(x) should be localized around 0 and have Nk
vanishing moments

F
1

0
xnk(x) dx=0, for all n < Nk (102)

The wavelet coefficients {Cf, {cj, k}j, k} of a function f(x) are then defined
(modulo a normalization factor) as the coefficients of f in the orthornomal
wavelet basis
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˛cf=Of, fP=>10 f(x) f(x) dx,

cj, k=2 j/2 Of, kj, kP=2 j/2 >10 f(x) kj, k(x) dx=2 j >10 f(x) k(2 jx − k) dx

(103)

Since {f(x), {kj, k}j, k} is an orthornormal basis, one gets the reconstruction
formula

f(x)=cff(x)+C
j \ 0

2−j/2 C
0 [ k < 2j

cj, kkj, k(x) (104)

On the one hand, let us note that, since all the kj, k have at least one
vanishing moment, cf essentially ‘‘captures’’ the mean value of f. This
explains why it is often referred to as the approximation coefficient. On the
other hand, assuming that the scale 1 ‘‘corresponds’’ to k, one can easily
prove that kj, k(x) is localized around x=xj, k and corresponds to the scale
aj with

xj, k=2−jk and aj=2−j (105)

Therefore, cj, k essentially ‘‘captures’’ the details of f(x) around the point
xj, k and at the scale aj. They are referred to as the detail coefficients. These
coefficients lie on a dyadic grid in the space-scale half-plane.

We built a quasi-self-similar wavelet series f̃(x) by specifying its
wavelet coefficients {cj, k}j, k and cf. The {cj, k}j, k are defined recursively in
the following way:

˛c0, 0=1,

cj, 2k=W(l)
j−1, kcj−1, k,

cj, 2k−1=W(r)
j−1, kcj−1, k

(106)

for all j (j \ 1) and k (0 [ k < 2 j), where the W (e)
j, k (e=l, i.e., left or r, i.e.,

right) are reals between − 1 and 1. We can try to approximate at best
the original signal f by a quasi-self-similar wavelet series f̃ (associated to
g=k and the contractions S0(x)=x/2 and S1(x)=x/2+1/2) and thus
deduce the multi-fractal properties of f.

8.1. Deterministic Examples

We now apply our results for some deterministic examples of self-
similar functions and quasi-self-similar functions. We also give some
examples of quasi-self-similar functions that are not self-similar and for
which the function j(p) can be numerically estimated.
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8.1.1. Some Self-Similar Functions

Let r be an integer such that r \ 2, Si(x)=(x+i)
r for i=0,..., r − 1.

Consider the self-similar function

F(x)=C
r−1

i=0
liF(S−1i (x))+g(x)

where the function g is Ck with all derivatives of order less than k having
fast decay. If i=(i1,..., in) ¥ {0,..., r − 1}n, then |Ii |=|Si(I)|= 1

rn . We have

Cn(x, y)=
1
n

log 1 C
|i|=n

|li |x2+
1
n

log rny=log(|l0 |x+ · · · +|lr−1 |x)+y log r

Thus

j(x)=−
log(|l0 |x+ · · · +|lr−1 |x)

log r
(107)

Hence

j(1)=−
log(|l0 |+ · · · +|lr−1 |)

log r

Therefore, we recover the classical result of Falconer (36): if j(1)+1 < k
then

dimB(GraphI(F))=sup 11, 1+
log(|l0 |+ · · · +|lr−1 |)

log r
2

We obtain similar results if r is not integer, r \ 2 and if we only take S0
and S1. L

8.1.2. Some Quasi-Self-Similar Functions

Let r be an integer larger than 2. Let g be a Ck wavelet supported in I
(resp. either a Ck compactly supported wavelet or a Ck function with all
derivatives of order less than k having fast decay). The quasi-self-similar
function associated to Si(x)= x+i

r for i=0,..., r − 1 is

F(x)=C
+.

j=0
l1i1(x) · · · l jij(x) g(r jx − r j−1i1(x) − · · · − rij−1(x) − ij(x))

1 resp. F(x)=C
+.

j=0
C

(i1,..., ij) ¥ {0,..., r−1}
j

l1i1 · · · l jij g(r jx − r j−1i1 − · · · − rij−1 − ij)2
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These are wavelet series ;+.j=0 ;l Cj, l g(r jx − l) with C0, 0=1, Cj, l=l1i1 · · · l jij

for lr−j=i1
r+ · · · +

ij
rj (resp. Cj, l=;(i1,..., ij)

l=i1r
j−1+· · ·+ij

l1i1 · · · l jij ) and 0 elsewhere.

We establish the following results:

If r=2 and b(x) :=lim infjW.
sup|l2 −j−x| < 2.2 −j log |Cj, l|

log r −j < k then aF(x)=b(x).

If r \ 3 and a(x)=lim infnQ.
log |l1i1(x)

· · ·lnin(x)
|

log r −n < k then aF(x)=a(x).

If r \ 2 then

j(p)=lim inf
jQ.

log(; (i1,..., ij) ¥ {0,..., r−1}
j (|l1i1 | · · · |l jij |)

p)

log r−j
(108)

=lim inf
jQ.

; j
n=1 log(; r−1

i=0 |lni |
p)

log r−j
(109)

If j(p)+1 < kp then

g(p)=1+lim inf
jQ.

log(; (i1,..., ij) ¥ {0,..., r−1}
j (|l1i1 | · · · |l jij |)

p)

log r−j
(110)

=1+lim inf
jQ.

; j
n=1 log(; r−1

i=0 |lni |
p)

log r−j
(111)

If 1+lim infjQ.
; jn=1 log(;

r−1
i=0 |l

n
i |)

log r −j < k then

dimb(graphI(F))=sup 11, 1 − lim inf
jQ.

; j
n=1 log(; r−1

i=0 |lni |)
log r−j

2 L

We now give some examples of functions that seem to be quasi-self-
similar but are self-similar in reality. For i=0, 1, let lni=li if n is even,
bi if n is odd. Assume that |li | ] |bi | for i=0, 1. Consider the quasi-self-
similar function associated to the sequences (ln0)n \ 1 and (ln1)n \ 1, to the
contractions S0(x)=x/2 and S1(x)=(x+1)/2 and to a function g as
above

F(x)=C
+.

j=0
C

(i1,..., ij) ¥ {0, 1}
j

l1i1 · · · l jij g(2 jx − 2 j−1i1 − · · · − 2ij−1 − ij)

Remark that l1i1 · · · l jij equals (bi) j/2 (li) j/2 if j is even, and
(bi) (j+1)/2 (li) (j−1)/2 if j is odd. We can write

F(x)=b0F1(2x)+b1F1(2x − 1)+g(x)
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with

F1(x)=C
+.

j=0
C

(i1,..., ij) ¥ {0, 1}
j

l2i1 · · · l1+jij g(2 jx − 2 j−1i1 − · · · − 2ij−1 − ij)

Remark that l2i1 · · · l1+jij equals (li) (j+1)/2 (bi) (j−1)/2 if j is odd, and
(li) j/2 (bi) j/2 if j is even. Thus F1 ] F and so the function F is not self-
similar under contractions S0 and S1. Nevertheless, since the function F2
(written in (28) for N=2) is equal to F, then the quasi-self-similar equation
(27) for N=2 for this function F becomes

F(x)=b0l0F(4x)+b0l1F(4x − 1)+b1l0F(4x − 2)

+b1l1F(4x − 3)+b0 g(2x)+b1 g(2x − 1)+g(x) (112)

As a consequence the function F is self-similar under the contractions
(x+i)/4, i=0, 1, 2, 3. Here we can compute j(p) using either formula
(107) or (109). Formula (107) implies that

j(p)=−
log(bp0+bp1)+log(lp0+lp1)

log 4
(113)

On the other hand

C
j

n=1
log(|ln0 |

p+|ln1 |
p)

=˛
j
2

log(|l0 |p+|l1 |p)+
j
2

log(|b0 |p+|b1 |p) if j is even

(j − 1)
2

log(|l0 |p+|l1 |p)+
(j+1)

2
log(|b0 |p+|b1 |p) if j is odd

(114)

So formula (109) yields the same value for j(p). L

We now give some examples of quasi-self-similar functions that are
not self-similar and for which the function j(p) can be numerically
estimated. Take ln0=(−1)n (13+

1
n+1) and ln1=(−1)n (34+

1
n+1), then the

associated quasi-self-similar function is not self-similar for the following
reason: consider the function m defined on T=1n Tn (where Tn={Ii;
|i|=n}) by

-n ¥Ng and -Ii ¥Tn : m(Ii)=|l1i1 · · · lnin | (115)
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For I=I(i1,..., in) ¥Tn and J=I(in+1,..., in+p) ¥Tp we denote IJ=I(i1,..., in+p).
Unlike the case (23) the function m here is not quasi-Bernouilli; if m were
quasi-Bernouilli then

,C > 0; -n, p \ 1, -I ¥Tn, -J ¥Tp,
1
C

m(I) m(J) [ m(IJ) [ Cm(I) m(J)

This implies that

-n \ 1, -I ¥Tn,
1
C
[

m(II)
(m(I))2

[ C

In particular

-n \ 1,
1
C
[ :l

n+1
0 · · · l2n0
l10 · · · ln0
: [ C (116)

Set Un=| l
n+1
0 · · ·l2n0

l
1
0 · · ·l

n
0

|, Zn=log Un+1Un and Sn−1=;n−1
k=1 Zk. Clearly

Un=U1 exp(Sn−1) (117)

and

Zn=log |l2n+10 |+log |l2n+20 | − 2 log |ln+10 |

4
1

(2n+1)
+

1
(2n+2)

−
2

(n+1)

4 −
1
n

Thus the series Sn (of general term Zn) diverges to −.. Whence
limnQ. Un=0. So we have contradiction with the existence of C > 0
satisfying (116).

Now, formula (109) for r=2 can be written as

j(p)=lim inf
jQ.

V1(p)+ · · · +Vj(p)
j

(118)

where Vn(p)=− log(|ln0|
p+|ln1|

p)
log 2 . Note that if Vn(p) has a finite limit f(p) when

n goes to the . then j(p)=f(p). For our example

lim
nW.

Vn(p)=−
log((1/3)p+(3/4)p)

log 2
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So

j(p)=−
log((1/3)p+(3/4)p)

log 2

We now prove that K
¯

(p, j(p)) > 0 for any p > 0. For that we first prove
the following lemma for

Tn := C
|i|=n

|l1i1 · · · lnin |
p |Ii |−j(p) (119)

Lemma 9.

-p > 0, lim inf
nQ.

Tn > 0 (120)

Proof of the Lemma 9. We have (below p will be an exponent)

Tn= C
|i|=n

|l1i1 · · · lnin |
p 1

(lp0+lp1)
n with l0=1/3 and l1=3/4

= C
|i|=n

w1i1 · · · wnin
(lp0+lp1)

n with wnin=|lnin |
p

=
<n
i=1 (w i0+w i1)
(lp0+lp1)

n

=
<n
i=1 Wi

(lp0+lp1)
n with Wi=w i0+w i1

=
exp(;n

i=1 log Wi)
(lp0+lp1)

n

=
exp(;n

k=1 log |lk0 |
p+|lk1 |

p)
(lp0+lp1)

n

=exp 1 C
n

k=1
[log(|lk0 |

p+|lk1 |
p) − log a]2 with a=lp0+lp1

=exp 1 C
n

k=1
Uk 2 with Un=log 5|l

n
0 |
p+|ln1 |

p

a
6

=log 5(1/3+ 1
n+1)

p+(3/4+ 1
n+1)

p

a
6
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We will study the convergence of the series of general term Un. We have

11/3+
1

n+1
2p+13/4+

1
n+1
2p

=(1/3)p+(3/4)p+
(1/3)p−1 p

n+1
+

(3/4)p−1 p
n+1

+o 11
n
2

=(1/3)p+(3/4)p+
(1/3)p−1 p+(3/4)p−1 p

n+1
+o 11

n
2

and

Un=1
(1/3)p−1 p+(3/4)p−1 p

(1/3)p+(3/4)p
2 1

n+1
+o 11

n
2 (121)

Therefore -p > 0, limnQ. (;n
k=1 Uk)=+.. Whence lim infnQ.Tn > 0. L

Proposition 6.

-p > 0, K
¯

(p, j(p)) > 0 (122)

Proof of Proposition 6. Let mn be the measure of Borel defined on
[0, 1[ by:

mn(I(i1,..., in))=|l1i1 · · · lnin |
p 1 1

2n
2−j(p) (123)

Let nn be the probability measure given by nn=
mn
Tn

. Then nn converges
weakly to a probability measure n, i.e., -f continuous on [0, 1], > f dnn 0

> f dn.
Let s \ 0 and J=I(i1,..., is). Let q \ s and Jq0 and Jq1 the elements of Tn

that are contiguous to J (without any loss of generality we can assume that
they exist).

Let f be a continuous function with compact support such that
0 [ f [ 1, f=1 on J and Support(f) … Jq0 2 J 2 Jq1. Then

n(J) [ F f dn= lim
nQ.

F f dnn [ lim inf
nQ.

(nn(J)+nn(Jq0)+nn(Jq1)) (124)
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Since Tn+1 is a refinement of Tn then I(i1,..., is)=1is+1,..., in I(i1,..., is, is+1,..., in). So

nn(Ii1,..., is )=
1
Tn

C
is+1,..., in

|l1i1 |
x · · · |l sis |

x |l s+1is+1 |
x · · · |lnin |

x 1 1
2n
2−j(x)

=
|l1i1 |

x · · · |l sis |
x

Ts
1 1

2 s
2−j(x)

=
ms(I(i1,..., is))

Ts

Since lim infnQ. Tn > 0 then there exists r > 0 such that for s large enough,
nn(J) [ 1

r ms(J). On the other hand for n \ q, nn(Jq0)=nq(Jq0) and
nn(Jq1)=nq(Jq1). It follows from (124) that for any q

n(J) [
1
r

ms(J)+nq(Jq0)+nq(Jq1) (125)

Without any loss of generality we can assume that Jq0=I0,..., 0 and
Jq1=I1,..., 1. We will prove that limqQ+. nq(Jq0)=0. The other limit can be
obtained by similar arguments. We have

nq(Jq0)=
(1/3+1/2)p · · · (1/3+ 1

q+1)
p

Tq
1 1

2q
2−j(p)

=D
q

k=1

(1/3+ 1
k+1)

p

(1/3+ 1
k+1)

p+(3/4+ 1
k+1)

p

The general term of this product goes to (1/3)p

(1/3)p+(3/4)p < 1. So

lim
qQ.

nq(Jq0)=0

It follows from (125) that

n(J) [
1
r

ms(J) (126)

Let {Ii}i be a e-recovering of [0, 1[. For e > 0 small enough,

1 [C
i

n(Ii) [
1
r
C
i

m(Ii)p |Ii |−j(p) (127)

As a consequence K
¯

(p, j(p)) > 0. L
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Therefore we get the following results:

• -p > 0, K
¯

(p, j(p)) > 0.

• amin=2 − log 3
log 2 and amax=

log 3
log 2 .

• If k \ 2, it is easy to see that -p > 0, jŒ(p) < k. On the other hand
-p > 0, j(p)+1 < kp. Thus for a=jŒ(p0) ¥ [2 − log 3

log 2 ,
log 3
log 2], we have d(a)=

infq > 0(aq − j(q))=jŒ(p0) p0 − j(p0). Moreover

dimB(GraphI(F))=1+
log(1/3+3/4)

log 2
4 1,1154772

Clearly, similar results hold if we take ln0=(−1)n (A+1
n) and ln1=

(−1)n (B+1
n) with 0 < A < B < 1.

8.2. Random Quasi-Self-Similar Cascades

In ref. 37 (see also references therein), Arneodo et al. presented a first
theoretical step towards a rigorous mathematical treatment of random
cascading processes on the dyadic tree of their orthogonal wavelet coeffi-
cients. Arneodo et al. introduced a class of random quasi-self-affine func-
tions using the orthogonal wavelet transform. To each random fractal
function corresponds a random cascading process (which is a random quasi-
self-similar wavelet series) on the dyadic tree of its orthogonal wavelet
coefficients. Let us recall their work (for more details, see ref. 37).
A random quasi-self-similar wavelet series (denoted a W-cascade in ref. 37)
is of the form (104) where the coefficient cf is chosen to be an arbitrary
random variable and the {cj, k}j, k are defined recursively as in (106) for all j
(j \ 1) and k (0 [ k < 2 j) and where the W (e)

j, k (e=l or r) are independent
identically distributed (i.i.d.) real valued random variables. Since all the
random variables W (e)

j, k are i.i.d., we will omit the indexes j, k and (e) and
we will use W as the generic name for these variables. This recursive rule
can be seen as a (quasi-self-similar) cascade process going from large scales
(starting at scale 1) to smaller scales. It lies on a binary tree whose nodes
are the wavelet coefficients and whose branches basically correspond (apart
from the sign of the coefficients) to the same action of multiplying by W.
Such a recursive rule is referred to a W-cascade and f(x) is referred to
the function corresponding to the W-cascade. Let us note that both a
W-cascade and its corresponding function are fully defined by the analyz-
ing wavelet k, the laws of cf and W.

The so-obtained function f(x) [assuming that the infinite sum in (104)
converges] is quasi-self-similar in the sense that the law of a wavelet coefficient

586 Aouidi and Ben Slimane



|cj1, k | at the scale 2−j1 can be linked to the law of another wavelet coeffi-
cient |cj2, kŒ | at the scale 2−j2 > 2−j1 using a multiplicative random variable
depending only on the ratio of the two scales

|cj1, k |=l |cj2, kŒ |Xj1 −j2

where=l stands for the equality in law and where Xn=|W1 · · · Wn | (the Wi’s
are i.i.d. real valued random variables with the same law as W). Thus, from
a statistical point of view, the details of the function f at a scale a1 are the
same as the details at a scale a2 up to a rescaling factor that depends only
on a1/a2.

This was the ‘‘theoretical’’ description of a W-cascade. Arneodo et al.
then proved that the sum in (104) converges in some sense towards a (quasi-
self-similar) random function f(x). They proved that, for almost all
realizations of the W-cascade, (104) converges in L2per([0, 1]), then they
characterized some global regularity properties of the limit function. Let

y(q)=−log2 E(|W|q) − 1, -q ¥ R

and F(a) the Legendre transform of the function y(q)

F(a)=inf
q

(qa − y(q))

Arneodo et al. proved that for almost all the realizations of the W-cascades

amin=sup{h < −E(log2 |W|), F(h) < 0}

and

amax=inf{h > −E(log2 |W|), F(h) < 0}

Both spectra d(a) and F(a) bring valuable information on the W-cascade.
The d(a) spectrum has been initially introduced for characterizing the
singular behavior of deterministic fractal signals. We have seen that, for
the large class of quasi-self-similar functions, the d(a) spectrum can be
obtained using the wavelet based multifractal formalism. In the case of
random W-cascades, we actually get two spectra: the spectrum d(a) for
each realization (which a priori depends on the realization) and the statis-
tical spectrum F(a) that characterizes the probability that a given singular
behavior appears in a realization of the cascade. Thus, for instance, the
maximum value of F(a) corresponds to the most probable singular behav-
ior in a realization of a W-cascade. On the other hand, the negative values
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of F(a) correspond to ‘‘rare’’ events that one should not expect to observe
in almost all realizations. Arneodo et al. showed that, in the case of
W-cascades, the wavelet based multifractal formalism actually leads to a
very reliable numerical estimation of the F(a) spectrum. Arneodo et al.
have shown mathematically and checked numerically on various computer
synthetized signals, that very different statistical quantities such as the sta-
tistical spectrum, the self-similarity kernel and the correlation functions can
be extracted directly from the fractal function using its wavelet decomposi-
tion (orthogonal or continuous) with an arbitrary analyzing wavelet. This
mathematical study actually provides algorithms that are readily applicable
to experimental situations. Recent applications of their methodology in the
context of fully-developed turbulence have revealed the existence of a
(nonscale invariant) log-normal cascading process underlying the turbulent
velocity fluctuations. More surprising are the results of a similar investiga-
tion of financial times series. Underlying the fluctuations of the volatility
(standard deviation) of the price variations, there exists a causal informa-
tion cascade from large to small time scales that can be visualized with the
wavelet representation. Let us emphasize that the fact that variations of
prices over a one month scale influence in the future the daily price varia-
tions, is likely to be extraordinarily rich in consequences and this, not only
for the fundamental understanding of the nature of financial markets, but
also (and maybe more important) for practical applications. Indeed, the
nature of the corrections across scales that are implied by this causal
cascade has profound implications on the market risk, a problem of utmost
concern for all financial institutions as well as individuals. These prelimi-
nary results are very promising as far as further experimental investigations
of multiplicative cascade processes are concerned. Arneodo et al. thought
that similar wavelet-based statistical analysis will lead to significant
progress in fields other than hydrodynamic turbulence and finance.
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